583 research outputs found

    Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    Get PDF
    This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation

    Effects of Exogenous Cellulase Source on In Vitro Fermentation Characteristics and Methane Production of Crop Straws and Grasses

    Get PDF
    In vitro fermentation experiments were conducted to investigate the effects of 3 sources of exogenous cellulase products (EC) at 4 dose rates (DR) (0, 12, 37 and 62 IU/g of DM) on degradation of forage and methane production by mixed rumen micro-organisms of goats. The maximum gas production (Vf) of grasses was higher (P<0.001) in Neocallimastix patriciarum (NP) group than those in Trichoderma reesei (TR) and Trichoderma longibrachiatum (TL) groups. Quadratic increases in dry matter degradation (DMD) of forage and neutral detergent fiber (NDFD) of straw were observed for all EC, with optimum DR in the low range. Supplementation of EC originated from TR and NP increased (P<0.001) DMD of forage compared to that from TL. Addition of EC originated from TR and NP also decreased pH value, ammonia nitrogen (NH3-N) and methane (CH4) production compared to that from TL. Quadratic decreases in pH value, NH3-N and CH4 of forage were noted for EC of TR and NP, and with optimum DR in the low range. For short chain fatty acid, the EC of NP increased total volatile fatty acid (TVFA) and acetate concentration and the ratio of acetate to propionate of forage compared with EC of TL and TR, and with optimum DR in the low to medium range. It was concluded that the source of EC differed in fiber degradation and methane emission, and with optimum DR of TR in the low range (from 12 to 37 U/g DM) in improving fiber degradation and decreasing methane emission

    Tunable variation of optical properties of polymer capped gold nanoparticles

    Full text link
    Optical properties of polymer capped gold nanoparticles of various sizes (diameter 3-6 nm) have been studied. We present a new scheme to extract size dependent variation of total dielectric function of gold nanoparticles from measured UV-Vis absorption data. The new scheme can also be used, in principle, for other related systems as well. We show how quantum effect, surface atomic co - ordination and polymer - nanoparticle interface morphology leads to a systematic variation in inter band part of the dielectric function of gold nanoparticles, obtained from the analysis using our new scheme. Careful analysis enables identification of the possible changes to the electronic band structure in such nanoparticles.Comment: 13 pages,7 figures, 1 tabl

    CMB constraints on noncommutative geometry during inflation

    Full text link
    We investigate the primordial power spectrum of the density perturbations based on the assumption that spacetime is noncommutative in the early stage of inflation. Due to the spacetime noncommutativity, the primordial power spectrum can lose rotational invariance. Using the k-inflation model and slow-roll approximation, we show that the deviation from rotational invariance of the primordial power spectrum depends on the size of noncommutative length scale L_s but not on sound speed. We constrain the contributions from the spacetime noncommutativity to the covariance matrix for the harmonic coefficients of the CMB anisotropies using five-year WMAP CMB maps. We find that the upper bound for L_s depends on the product of sound speed and slow-roll parameter. Estimating this product using cosmological parameters from the five-year WMAP results, the upper bound for L_s is estimated to be less than 10^{-27} cm at 99.7% confidence level.Comment: 8 pages, 1 figure, References added, Accepted for publication in EPJC (submitted version

    The Structure of Nanoscale Polaron Correlations in La1.2Sr1.8Mn2O7

    Full text link
    A system of strongly-interacting electron-lattice polarons can exhibit charge and orbital order at sufficiently high polaron concentrations. In this study, the structure of short-range polaron correlations in the layered colossal magnetoresistive perovskite manganite, La1.2Sr1.8Mn2O7, has been determined by a crystallographic analysis of broad satellite maxima observed in diffuse X-ray and neutron scattering data. The resulting q=(0.3,0,1) modulation is a longitudinal octahedral-stretch mode, consistent with an incommensurate Jahn-Teller-coupled charge-density-wave fluctuations, that implies an unusual orbital-stripe pattern parallel to the directions.Comment: Reformatted with RevTe

    Effects of Test-Driven Development : A Comparative Analysis of Empirical Studies

    Get PDF
    Test-driven development is a software development practice where small sections of test code are used to direct the development of program units. Writing test code prior to the production code promises several positive effects on the development process itself and on associated products and processes as well. However, there are few comparative studies on the effects of test-driven development. Thus, it is difficult to assess the potential process and product effects when applying test-driven development. In order to get an overview of the observed effects of test-driven development, an in-depth review of existing empirical studies was carried out. The results for ten different internal and external quality attributes indicate that test-driven development can reduce the amount of introduced defects and lead to more maintainable code. Parts of the implemented code may also be somewhat smaller in size and complexity. While maintenance of test-driven code can take less time, initial development may last longer. Besides the comparative analysis, this article sketches related work and gives an outlook on future research.Peer reviewe

    Spinor condensates and light scattering from Bose-Einstein condensates

    Full text link
    These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground--state spin domain structures and dynamical studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999 Summer School, Session LXXI

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State

    Full text link
    Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II detector we have observed a narrow resonance in the Ds*+pi0 final state, with a mass near 2.46 GeV. The search for such a state was motivated by the recent discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final states in CLEO data, we observe peaks in both of the corresponding reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new state, designated as the DsJ(2463)+. Because of the similar dM values, each of these states represents a source of background for the other if photons are lost, ignored or added. A quantitative accounting of these reflections confirms that both states exist. We have measured the mean mass differences = 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and = 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+ state. We have also searched, but find no evidence, for decays of the two states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels respectively, are consistent with their interpretations as (c anti-strange) mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical Review D; minor modifications and fixes to typographical errors, plus an added section on production properties. The main results are unchanged; they supersede those reported in hep-ex/030501
    corecore